Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Neurosci ; 27(4): 643-655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424324

ABSTRACT

Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-ß1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-ß1 followed by COL6A1. Knockdown of TGF-ß1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-ß1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Animals , Humans , Mice , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Transforming Growth Factor beta1 , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Drosophila , Extracellular Matrix/metabolism , Dipeptides/metabolism , DNA Repeat Expansion/genetics
2.
JAMA Neurol ; 81(3): 283-290, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38285472

ABSTRACT

Importance: Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) holds the promise to arrest or cure monogenic disease if it can be determined which genetic change to create without inducing unintended cellular dysfunction and how to deliver this technology to the target organ reliably and safely. Clinical trials for blood and liver disorders, for which delivery of CRISPR is not limiting, show promise, yet no trials have begun for central nervous system (CNS) indications. Observations: The CNS is arguably the most challenging target given its innate exclusion of large molecules and its defenses against bacterial invasion (from which CRISPR originates). Herein, the types of CRISPR editing (DNA cutting, base editing, and templated repair) and how these are applied to different genetic variants are summarized. The challenges of delivering genome editors to the CNS, including the viral and nonviral delivery vehicles that may ultimately circumvent these challenges, are discussed. Also, ways to minimize the potential in vivo genotoxic effects of genome editors through delivery vehicle design and preclinical off-target testing are considered. The ethical considerations of germline editing, a potential off-target outcome of any gene editing therapy, are explored. The unique regulatory challenges of a human-specific therapy that cannot be derisked solely in animal models are also discussed. Conclusions and Relevance: An understanding of both the potential benefits and challenges of CRISPR gene therapy better informs the scientific, clinical, regulatory, and timeline considerations of developing CRISPR gene therapy for neurologic diseases.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Animals , Humans , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genetic Therapy , Gene Editing , Central Nervous System
3.
EMBO J ; 41(1): e105026, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34791698

ABSTRACT

Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.


Subject(s)
C9orf72 Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Dipeptides/metabolism , Proteolysis , Small Molecule Libraries/pharmacology , Animals , Cell Line , Codon, Initiator/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Repeat Expansion/genetics , Disease Models, Animal , Drosophila/drug effects , Frontotemporal Dementia/pathology , HEK293 Cells , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells/pathology , Isoquinolines/pharmacology , Longevity/drug effects , Motor Neurons/drug effects , Motor Neurons/pathology , Protein Biosynthesis/drug effects , Proteolysis/drug effects , RNA Interference , Sulfonamides/pharmacology
4.
Acta Neuropathol ; 135(2): 213-226, 2018 02.
Article in English | MEDLINE | ID: mdl-29273900

ABSTRACT

In addition to motor neurone degeneration, up to 50% of amyotrophic lateral sclerosis (ALS) patients present with cognitive decline. Understanding the neurobiological changes underlying these cognitive deficits is critical, as cognitively impaired patients exhibit a shorter survival time from symptom onset. Given the pathogenic role of synapse loss in other neurodegenerative diseases in which cognitive decline is apparent, such as Alzheimer's disease, we aimed to assess synaptic integrity in the ALS brain. Here, we have applied a unique combination of high-resolution imaging of post-mortem tissue with neuropathology, genetic screening and cognitive profiling of ALS cases. Analyses of more than 1 million synapses using two complimentary high-resolution techniques (electron microscopy and array tomography) revealed a loss of synapses from the prefrontal cortex of ALS patients. Importantly, synapse loss was significantly greater in cognitively impaired cases and was not due to cortical atrophy, nor associated with dementia-associated neuropathology. Interestingly, we found a trend between pTDP-43 pathology and synapse loss in the frontal cortex and discovered pTDP-43 puncta at a subset of synapses in the ALS brains. From these data, we postulate that synapse loss in the prefrontal cortex represents an underlying neurobiological substrate of cognitive decline in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/psychology , Cognitive Dysfunction/pathology , Prefrontal Cortex/pathology , Synapses/pathology , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Atrophy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cohort Studies , DNA-Binding Proteins/metabolism , Female , Humans , Male , Middle Aged , Phosphorylation , Prefrontal Cortex/metabolism , Prefrontal Cortex/ultrastructure , Synapses/metabolism , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...